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C∗-Algebras and K-Theory

The main objects of this poster are invariants attached to C∗-algebras - the main object of study in what is
nowadays called non-commutative topology.

Definition 1. A (complex) C∗-algebra A is a (complex) Banach algebra A together with an involution
x 7→ x∗ on A that fulfills the so-called C∗-identity

‖x∗x‖ = ‖x‖2 for all x ∈ A.

A ∗-homomorphism ϕ : A→ B between C∗-algebras is a just morphism of algebras that commutes with the
involutions, i.e. that for all x ∈ A we have

ϕ(x∗) = ϕ(x)∗.

We denote the category of C∗-algebras by C∗.

This seemingly harmless equation has strong implications to the structure of such algebras. For instance we
have that

(1) Every ∗-homomorphism is automatically continouous,

(2) every injective ∗-homomorphism is automatically isometric, in particular

(3) the image of every ∗-homomorphism is automatically closed,

(4) the topology of A can be recovered from the underlying involutive ring.

Topology relates to C∗-algebras in the following fashion. Consider a space X with an action of a (to make life
easier) discrete group G on it. We can associate to this pair a so-called crossed-product C∗-algebra C0(X)oG
that is in some sense to be thought of as a C∗-algebra of the homotopy orbits of the G-action on X. This is
made precise by the following

Theorem (Green). Suppose the action of G on X is proper and free, then C0(X) o G and C0(X/G) are
Morita equivalent.

If G is the trivial group then C0(X) oG = C0(X) so we recover the usual topology in C∗-algebras. On the
other hand if the space X consists only of a point, we call the resulting C∗-algebra the group C∗-algebra and
denote it by C∗G. It is a completion of the complex group ring CG.

Definition 2. Associated to a C∗-algebra is a topological K-theory spectrum Ktop(A) whose homotopy
groups are the so-called topological K-theory groups Ktop

∗ (A) of A.

For example for a compact space one has an isomorphism

Ktop
∗ (C(X)) ∼= K∗(X),

whereas studying the topological K-theory groups of the group C∗-algebra C∗G is the content of the Baum-
Connes conjecture which predicts a certain map

KG
∗ (EG) // Ktop

∗ (C∗G)

to be an isomorphism (if one interprets the group algebra in the correct way).

Surgery and L-Theory

Next we want to introduce a different invariant which is attached to involutive rings (and thus in particular to
C∗-algebras). For this we want to recall the basic ideas of surgery theory. One of the main questions surgery
theory was developed to answer is as follows:

Question. Given a (say compact) CW-complex X, is X homotopy equivalent to a closed manifold?

The main answer is to observe the following necessary condition: If X is homotopy equivalent to a closed
manifold, then the cohomology of X must satisfy Poincaré duality. A refined version of this statement about
the cohomology of X implies that X is what is called a Poincaré complex. Such spaces have a canonical sphe-
rical fibration associated to them, we call this spherical fibration by SF(X). If X is homotopy equivalent to
a closed manifold M it follows that SF(X) is the underlying sphere bundle of the (stable) normal bundle νM
of that manifold. In particular SF(X) must have a reduction to a vector bundle if X is homotopy equivalent
to a closed manifold. If such a reduction exists, the possible reductions are (non-canonically) in bijection to
the set of homotopy classes

[X,G/O].

This set is called the set of normal invariants of X, because elements of it can be represented by bordism

classes of degree one maps M
f−→ X with the property that there is a vector bundle E over X such that

f ∗(E) ∼= νM and M being a closed manifold. The following is one of the main theorems of surgery theory.

Theorem. There exists an abelian group L∗(π) which depends only on the fundamental group π = π1(X) of
X and a map

[X,G/O] Θ // L∗(π)

called the surgery obstruction map, such that if

Θ[M
f−→ X] = 0

it follows that X is homotopy equivalent to a manifold M ′, and M ′ is normally bordant to M .

These obstruction groups are called L-groups and where first constructed geometrically by Wall. Later there
was a purely algebraic definition of the L-groups L∗(R, τ) for any involutive ring (R, τ) using non-degenerate
forms over R and a variant of those which are called formations (and are closely related to the automorphisms
of non-degenerate forms). In this picture L∗(π) = L∗(Zπ,w), where w denotes an involution which reflects
the possible non-orientability of X.
Due to work of Ranicki, there is a functor from the category of involutive rings to the category of spectra,

Ringsinv L // Sp

(R, τ) � // L(R, τ)

such that the homotopy groups of L(R, τ) are the above described L-groups.
Notice that C∗-algebras are in particular involutive rings, and as such there are L-theory spectra and L-theory
groups associated to C∗-algebras.
Here is a remarkable connection between the L-groups and the topological K-groups of a C∗-algebra.

Integral Maps of Spectra

Theorem (Miller). Let A be a complex C∗-algebra. Then there is a natural isomorphism

Ktop
∗ (A)

∼= // L∗(A) .

It relies on the fact, that every finitely generated projective module over a C∗-algebra has a canonical (up to
homotopy) non-degenerate symmetric form over itself. A natural reflex of a topologist would be to ask the
following

Question. Does this isomorphism lift to an equivalence of functors with values in spectra?

Let us denote (to have the usual notations from topology) KU = Ktop(C) and we write LC for L(C), moreover
we denote by ku and `C the connective covers of KU and LC respectively.
It is known that the spectra KU and LC are not equivalent, and we have the following stronger version that
answers the question to the negative:

Theorem. Any map KU → LC, LC → KU and `C → ku induce zero on π0. The space of maps ku → LC
is interesting and will be investigated later.

Proof. This boils down to some well-know properties in stable homotopy theory. The main ingredients are
that π0 of all spectra involved is isomorphic to the integers, so it remains to verify that maps induce zero after
localizing at the prime (2). Now since L-spectra are all modules over the ring spectrum L(Z) and this is an
algebra over MSO, it follows that all L-spectra in question (2)-locally split as wedges of Eilenberg-MacLane
spectra. Thus it suffices to show the theorem if we replace all L-spectra by HZ(2). Then the crucial property is
that the spectrum KU∧HZ is rational (which follows essentially because the multiplicative and the additive
formal group law are isomorphic and the Bott element is invertible). It is important to not make the mistake
to think that also ku∧HZ is rational (we made this mistake and got very confused about it), which explains
why maps ku→ LC can be non-trivial on π0.

Our goal will be to calculate the space of natural transformations ku → L from connective topological
K-theory spectra to L-theory spectra of C∗-algebras. The main idea will be to calculate the set of natural
transformations on the level of the abelian groups und hope to lift this to a homotopical setting, where
spectra are available. For this we need to recall the following universal property of the KK-category.

Theorem (Higson,Uuye). The canonical functor C∗ → KK has the following universal property: The induced
functor

Fun(KK,Ab) // Fun(C∗,Ab)

is fully-faithful and has image the functors that send KK-equivalences to isomorphisms. Moreover those
are exactly the functors that are homotopy invariant, split exact, and stable. Furthermore topological K-
theory satisfies these properties and becomes corepresentable on KK, and a corepresenting object is C, i.e.
Ktop(A) ∼= KK(C, A).

Using the theorem of Miller, one sees that L-theory satisfies all properties to factor over KK. By the previous
theorem we hence obtain as an easy application of the Yoneda lemma that

Nat(Ktop, L) ∼= L0(C) ∼= Z

and it follows formally that Millers transformation corresponds to a unit in Z.

A possible homotopical lifting

We want to try to lift this argument using a homotopical enhancement of the category KK. The first obser-
vation to obtain this is the following

Theorem (Uuye). The category C∗ admits the structure of a fibration category, with weak equivalences given
by the KK-equivalences. In particular there exists an ∞-category KK∞ whose homotopy category is KK and
the canonical map C∗ → KK∞ makes the diagram

C∗ //

00

KK∞
��

KK

For technical reasons we need the following

Lemma. The ∞-category KK∞ is stable, hence in particular enriched in the ∞-category Sp∞ of spectra.

We have the analogue to the theorem of Higson, by N (C∗) we denote the nerve of the category C∗ and thus
view it as an ∞-category.

Theorem. The induced functor of N (C∗)→ KK∞ is an ∞-categorical localization, i.e.,

Fun(KK∞, Sp∞) // Fun(N (C∗), Sp∞)

is fully faithful and has image functors that are pointed and send KK-equivalences to equivalences of spectra.

Similar as to before Ktop-theory will factor over KK∞ and become corepresented by C. The idea now is to
show that L-theory (in a suitable sense) factors over KK∞. An ∞-categorical version of the Yoneda lemma
should then allow to compute the space of natural transformations as wanted. This is work in progress.
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